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Abstract. Fine-grained classification is a challenging problem due to subtle dif-
ferences between intra-class categories. In practice, fine-grained classification is
often used in conjunction with object detection algorithms to locate and identify
object categories. Despite recent achievements in both fine-grained classification
and object detection, few works have demonstrated datasets or solutions to simul-
taneously handle both tasks. We make two contributions to this problem. Firstly,
we construct a fine-grained classification and detection benchmark. Secondly, we
show an end-to-end convolutional neural networks (CNNs) architecture to detect
and classify fine-grained objects. Experimental results verify that our networks
perform favorably against alternatives.
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1 Introduction

Locating and identifying objects is important for many computer vision applications.
For example, one could develop automated computer vision software to process live
surveillance videos and recognize brand and model of a vehicle for identifying traf-
fic violations. For environmental monitoring, locating and recognizing wildlife could
generate statistics to help protecting endangered species. However, even for car enthu-
siasts or bird-watching experts, it is still difficult to identify a specific car model or bird
species accurately.

Recent advances in deep learning have shown promising results for image classifi-
cation and detection. PASCAL VOC [3] and ImageNet [11] are widely used to evaluate
classification/detection performance. Both datasets provide annotations for generic ob-
ject classification and detection. In contrast to generic object classification, fine-grained
classification aims at identifying objects within the same fine-grained category (or sub-
category). Stanford Cars [10] and Caltech-UCSD Birds 200 (CUB-200) [24] are the two
most popular benchmarks for evaluating such tasks. Comparing to the generic classifi-
cation task, images in fine-grained datasets usually exhibit small inter-class and large
intra-class variations in visual appearances. The small inter-class variation is due to
the natural of fine-grained classification task, where all objects belonging to the same
category share similar appearances. The large intra-class variation is introduced by the
dataset, where objects are often presented in close-up photos with a combination of
pose, viewpoint, illumination and background changes. A simple change in the camera



perspective may lead to dramatic visual differences which could easily fool a neural
network model trained on generic classification datasets.

While fine-grained datasets composed of close-ups are often geometrically warped
comparing to photos from generic classification datasets, it enables learning of features
more robust to variations in camera perspective and pose. Humans are able to rapidly
identify the model of a car from key visual features such as the shape of the taillight or
logo [27]. However, CNNs struggle on learning the fine details because it only learns
the object appearance and lacks understanding of keypoint location, pose and geometry
[7]. Recent work has shown that CNNs have remarkable capabilities to learn geometry-
related information in convolutional layers [31], but final fully-connected layers weaken
this ability and tend to keep only category-level information. Based on this finding, re-
searchers propose several two-stage object detectors [20, 4] to use shared convolutional
layers to find object proposals and output final predictions.

This leads to an open question: can we utilize a single network to learn both object-
level localization information as well as stable fine-grained features invariant to imag-
ing conditions and pose deformations? We address this question by creating a unified
framework to perform fine-grained object recognition, subsuming the problems of ob-
ject detection and fine-grained classification. Although many deep learning methods
have been proposed for each task, we are not aware of any framework that directly train
on both fine-grained classification and generic object detection datasets. By learning
both spatial locations and intra-class diversities of an object, we enable the network to
produce quality feature vectors with high distinctiveness. Additionally, as most convo-
lutional layers in our network are shared for both tasks, we introduce very little compu-
tational overhead to achieve combined goals of efficiency and accuracy.

The rest of this paper is organized as follows. Section 2 discusses related work.
Section 3 details our overall framework based on the proposed method. We show ex-
perimental results in Section 4 and conclude in Section 5.
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Fig. 1: Architecture of our network. Our network is based on Faster-RCNN and
branches after ROI Pooling layer for fine-grained classification.



2 Related Work

Visual Object Classification: Visual object classification aims at predicting class labels
from a given image. Deep convolutional neural networks (DNNs) have led to tremen-
dous success in visual recognition [11, 5]. Deep networks naturally enforce features
from different levels and can be trained easily in an end-to-end fashion to reach high
accuracy. Highway Networks [22] were the first to introduce bypassing paths to tackle
the gradient vanishing problem. ResNet further utilizes identity mapping as bypassing
paths and achieved remarkable performance in benchmark datasets such as ImageNet
and Microsoft COCO [5]. Experiments have shown that ResNet is able to converge on
as many as 1000 layers. In the mean time, researchers also attempt to make the network
wider. [23] proposes wider residual blocks to achieve better accuracy.

Fine-grained Classification: Fine-grained recognition is the process of identifying ob-
jects within the same category. Various fine-grained classification datasets have been
proposed, including bird species classification [9] and recognition of car brand, year
and model [10, 27]. [28] was among the first to employ deep object detection networks
for fine-grained classification. [6] leverages a convolutional networks to locate multi-
ple object parts and a two-stream classification network to encode object and part level
information. Spatial transformer networks [7] explicitly allow spatial manipulation of
training data, giving neural networks the ability to actively transform the region of inter-
est. Other research directions include attention models and feature pooling. Attention
models aim at focusing the network on only a few distinctive image parts/keypoints
[30] while feature pooling collects second-order or higher-order statistics to form a
more distinctive feature vector for better classification results [13].

Object Detection: Object detection aims at finding locations of object instances in a
scene. Recent work shows CNN has sufficient power to learning geometric represen-
tations to predict both the class label and geometric information of an object [31, 17,
20, 4]. Modern detectors can be categorized as one-stage or two-stage frameworks. The
one-stage detection framework [14, 18] is free of object proposals and can be trained in
an end-to-end fashion. At test time, the entire network is only evaluated once, achieving
real-time performance. The two-stage detection framework [20, 4], on the other hand,
includes a class-agnostic region proposal generator and a classifier. Generally speak-
ing, one-stage frameworks exhibit better efficiency and run at a higher frame rate, while
two-stage frameworks are more accurate and are capable of locating smaller objects.
Also, there is a growing interest in converting these frameworks into more compact
versions for real-time/embedded systems [12].

Weakly-supervised Object Localization: The recent progress of deep learning is largely
due to advances in high-power computing hardware and the availability of large-scale,
high-quality annotated datasets. However, the annotation of ground truth labels is ex-
pensive and labor-intensive, and sometimes even impossible considering the scale of to-
days massive visual data. Therefore, it is important to develop unsupervised or weakly-
supervised approaches to enable continuous learning. Researchers have investigated
weakly-supervised object localization by studying maximal activations in the network
layers [17, 31]. Our work attempts to learn from both detection and classification bench-
marks without full annotation.



Fig. 2: Randomly selected sample images from our FGR-4K benchmark. Compared
to the Stanford Cars [10] dataset, our benchmark contains more real-life images with
complex background.

3 Approach

3.1 Network Architecture

In [20], Ren et al. designed the Faster-RCNN network which is composed of a Re-
gion Proposal Network (RPN) and a backbone CNNs. To improve efficiency, they also
combined the RPN and the CNNs into a single network with a large number of shared
layers. Faster-RCNN exhibits excellent tradeoff of speed and accuracy. It runs at near
real-time speed (5fps) on a single GPU, while achieving state-of-the-art detection ac-
curacy. Although Faster-RCNN gives perfect results on detection benchmarks, it can
not be directly applied to the task of learning both detection and fine-grained classifica-
tion. Therefore, we build upon the Faster-RCNN network architecture and made a few
modifications. Firstly, we use ResNet-101 [5] as the backbone CNNs as it is deeper and
gives better accuracy compared to the ZF or VGG16 network used in the original paper.
Next, we made a new branch after the ROI Pooling layer for predicting fine-grained
categories. Therefore, apart from the original RPN stream which predicts bounding box
coordinates, the additional steam simultaneously predicts fine-grained class labels. Our
network structure is illustrated in Fig. 1.

3.2 Fine-grained Recognition Benchmark

Existing fine-grained classification benchmarks such as Stanford Cars [10] only con-
tain one object per image. Also, a large portion of the dataset is composed of stock
images with clean/white background. To provide a fair technical benchmark for evalu-
ating fine-grained classification and object detection performance, We introduce a new
dataset called FGR-4K (Fine-grained Recognition 4K). We plan to open-source this
dataset for research purposes. Our dataset is annotated using the same labels from the
Stanford Cars dataset (see Fig. 2). This dataset is constructed for testing only, as train-
ing and validation data could be obtained from Stanford Cars or PASCAL VOC car
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Fig. 3: t-SNE visualization [16] of features extracted from the joint model on Stan-
ford Cars test set (Best viewed zoomed in and in color). The similarities are calculated
purely based on visual feature embeddings. This illustrates that our joint model is able
to preserve fine-grained semantics information after dimensionality reduction.

Algorithm 1 Training Strategy
Parameters:M← CNNs Model
D ← Dataset

procedure TRAININGSTRATEGY(Dfg+det)
Mfg ← LEARNINGPOLICY(MImageNet,Dfg)
Mdet ← LEARNINGPOLICY(MImageNet,Ddet)
Mjoint ← netsurgery(Mfg,Mdet)
Mjoint ← LEARNINGPOLICY(Mjoint,Dfg+det)
returnMjoint

end procedure

class. Our dataset provides 3818 images crawled from Google image search API. These
images are filtered to include only those permitted for commercial reuse. We also run
automated deduplication, white background detection and text detection algorithms to
remove images not suitable for annotation. The deduplication is done by removing im-
ages with the same SHA256 checksum on RGB values. White background is identified
by converting the image to a binary map using 33% above its median pixel value as
the threshold. If white pixels occupy more than 50% of the image then we will remove
it from the candidate set. We use the open source text detection library [2] to remove
images detected with any words or letters. After the automatic filtering, we manually
clean up the dataset to choose only real-life images with complex background. Next, we
send the candidate set to human annotators to draw rectangles around all car objects that
fall into the given 196 fine-grained categories. Compared to the Stanford Cars dataset,
our benchmark contains more real-life images with complex backgrounds which are
challenging for both fine-grained classification and object detection tasks.
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Fig. 4: Confusion matrix on the CUB-200 and Stanford Cars datasets. The vertical axis
shows the groundtruth labels while the horizontal axis shows the predicted labels. Note
that our model makes more false positive predictions on the CUB-200 dataset compared
to the Stanford Cars dataset. This is because CUB-200 contains non-rigid transforma-
tions with larger intra-category variance on object pose and appearance.

3.3 Training Strategy

Because of the high diversity in fine-grained classes, we use on-the-fly data augmenta-
tion during training. The augmentation includes random cropping, resizing and rotation
up to 30 degrees. We also included random smooth filtering and JPEG compression
varying from 50% to 90% quality. The online augmentation is only applied to training
while the validation/testing accuracy is still reported on the original dataset. Due to the
difficulty in training initial weights for the whole network, we first train a ResNet model
on the fine-grained dataset and a Faster-RCNN model on the detection dataset sepa-
rately. Note that these two networks are using the same ResNet-101 backbone and the
only difference between them is the RPN network inserted between Res4b and Res5a
layers. Once both models converge, we freeze all layers in the detection model by set-
ting learning rate to 0 for all bottom layers below the ROI Pooling layer. Next, we
append all top layers above res4b from the fine-grained model to the detection model
as a separate branch for finetuning. During training, we define the maximum number of
iterations as max iter and iterations per step as step size. The learning rate will drop
by a factor of 10 (i.e. multiplied by lr decay where lr decay = 0.1 ). Once the step
size is reached, the learning rate decreases by 10. The accuracy jumps when learning
rate changes. This is because the solver has been optimizing at a certain learning rate
for a certain number of iterations to find the local optimum. The weight of the whole
model stabilizes for the duration of a consistent learning rate. After the learning rate re-
duces, it is easier for the neural networks to capture fine details and increase accuracy.
Assuming the initial warm-up learning rate to be lr init, when we reach the max iter
the learning rate will be lr init× lr decaymax iter/step size. When the accuracy satu-
rates, we will only fine-tune softmax layers to obtain the joint model. We illustrate the
details of our training strategy in Algo. 1.



4 Experiments

4.1 Initial Training

We use Caltech-UCSD Birds-200-2011 (CUB-200-2011) [24] and Stanford Cars dataset
[10] for fine-grained classification experiments. The CUB-200-2011 dataset contains
200 fine-grained bird categories with 11788 images. The Stanford Cars dataset con-
tains 16185 images with 196 classes of cars including year, make and model. Details
of the datasets are shown in Table. 1. For both datasets, We fine-tune on the ImageNet
ResNet-101 model. The model is trained with the base learning rate of 0.01, gamma
of 0.5, momentum of 0.9 and weight decay of 0.0001. Next, we start fine-tuning this
model. Once the training accuracy is saturated, we fix all bottom layer weights and only
fine-tune the softmax layer. The final accuracy is 81.0%. A comparison to related work
is shown in Table 1.

For object detection, We build our approach based on the state-of-the-art Faster-
RCNN [20] detection framework. We start training the modified Faster-RCNN network
explained in Sect .3 with ResNet-101 backend. The weights of ResNet-101 is initialized
with pre-trained ImageNet weights. We train our model with base learning rate of 0.001,
gamma of 0.1, momentum of 0.9 and weight decay of 0.0005. The training is performed
on the combined PASCAL VOC 07+12 dataset on a single class (car or bird). After
1000K iterations the tested mAP is 71.99% on VOC 07 and 77.85% on VOC 12 for the
bird class. We repeat the same procedure for the car class on VOC 07 and 12 and the
final mAP for the car class is 75.15% and 78.06%, respectively. Quantitative evaluations
can be found at Table. 1. Note that our accuracy is reported on images only containing
the bird or car class with all other annotations removed, while the accuracy reported by
all other algorithms still consider classes other than bird or car. Qualitative results are
shown in Fig. 7.
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Fig. 5: Precision-recall curve of our joint model on the FGR-4K dataset (Best viewed
electronically). Left: PR curve on the top-performing 30 classes. Right: PR curve on
the lowest-performing 30 classes. Note that our model is robust to stricter IoU criterias
and the performance starts to degrade when IoU is increased to more than 0.7.



Classification Accuracy (%) Detection MAP (%)

Bird (CUB-200) Car (Stanford) Bird (VOC)
Car
(VOC) Train Test

Xiao et al.
[25] 69.7

Krause et al.
[9] 92.8 Faster-RCNN

(VGG16)[20] 70.9 84.7 0712 07

Simon et al.
[21] 81.0

Lin et al.
[13] 91.3

Faster-RCNN
(ResNet50)
[20]

74.3 75.9 0712 12

Kong et al.
[8] 84.2

Zhang et al.
[29] 88.4 SSD300[14] 70.5 76.1 0712 07

Liu et al.
[15] 85.4 Xie et al.

[26] 86.3 YOLO[18] 57.7 55.9 0712 12

YOLOv2
544[19] 74.8 76.5 0712 12

Ours initial 81.0 90.1 72.0 75.2 0712 07
Ours Joint 72.6 86.2 77.9 78.0 0712 12

Table 1: Results on Fine-grained Classification and Object Detection benchmarks. Our
methods handles both tasks at the same time, while performs favorably against alterna-
tive methods designed specifically for each task.

4.2 Joint Training

Now that we obtained models for both detection and fine-grained classification, we start
merging the models for joint training. During inference time, the network will produce
bounding box locations in an image, as well as fine-grained class labels for each bound-
ing box. We freeze all layers in the detection model by setting learning rate to 0 for
all bottom layers below the roi pool5 layer. Next, we append all top layers above res4b
from the fine-grained classification model to roi pool5 layer in the detection model.
Because of weight discrepancies between the original bottom layers and the new bot-
tom layers trained on the object detection dataset, the test accuracy of the joint model
on CUB-200-2011 drops from 81.0% to 67.5%. After joint training for another round
(1000K iterations, freezing bottom layers) the fine-grained classification accuracy goes
up to 72.6%. We performed the same net-surgery and training procedures for the car
class. The final classification accuracy for cars is 86.2%. The detection accuracy stays
the same since we are only training the fine-grained branch with all other weights fixed.
We found that this training schedule leads to the best results comparing to alternative
approaches such as adjusting weights for all layers. The whole training process is il-
lustrated in Algorithm 1. Next, we apply our joint model to the FGR-4K benchmark
dataset. We show the precision-recall curve for the best and worst performing 30 cat-
egories in Fig. 5. This is done by varying the IoU threshold from 0.5 to 0.9 and re-
calculate mAP scores for all classes. We also compare our model with the commercial
vehicle recognition service provided by Sighthound [1] on the FGR-4K dataset. Since
Sighthound API only returns vehicle brand and model, we remove the year info from
both the groundtruth and predicted results on the FGR-4K dataset for comparison. The



final average mAP of our method is 62.59% while the average mAP of Sighthound is
56.88%. We show True /False predictions for each fine-grained class in Fig. 6. Note
that the production Sighthound model is possibly trained on a enlarged dataset which
includes more vehicle models than the FGR-4K dataset.
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Fig. 6: mAP and TP/FP scores of our joint model on the FGR-4K dataset (Best viewed
electronically). Left: True (green)/False (red) predictions using our approach. Right:
True (green)/False (red) predictions obtained by Sighthound Cloud API for vehicle
recognition [1]. The average mAP of our approach is 62.59% while the average mAP
of the Sighthound Cloud API is 56.88 %. Note that our model predicts less false alarms
comparing to the Sighthound production model.

.
4.3 Analysis

For the fine-grained classification experiments, we show the confusion matrix on the
CUB-200 and Stanford Cars datasets in Fig. 4. The CUB-200 contains objects with non-
rigid transformations and is more challenging compared to the Stanford Cars dataset.
Also, according to Table. 1, there is a larger gap between the classification accuracy
of our model and attention-based models [15, 9] on CUB-200 compared to Stanford
Cars. Furthermore, our joint model suffers more accuracy degradation on the CUB-200
dataset compared to the Stanford Cars dataset. Despite these limitations, our model is
able to learn from two vastly distinctive datasets and demonstrate competitive perfor-
mance compared to methods developed for each task. We apply t-SNE visualization
[16] to features extracted from the joint model on Stanford Cars test set and visualize
the embeddings in Fig. 3. This illustrates that our joint model is able to preserve fine-
grained semantics information in the high-dimensional space. The t-SNE visualization
also indicates that our learnt features are able to capture visual similarities but is less
sensitive to pose variations. For the FGR-4K dataset, we evaluate the detector perfor-
mance against varying IoU thresholds in Fig. 5. As can be seen from the figure, the
mAP per category only starts decreasing when IoU is more than 0.7. This shows that
our detector is robust to stricter evaluation criterias, which is generally more desirable
for real life vision applications. We also notice that the best-performing class labels are
mostly composed of visually distinctive car models from different manufacturers, while
the lowest-performing classes are more often from the same manufacturer with similar
car-model names. This implies that the current joint network is good at detecting objects
but is still having difficulties capturing small partial details within the object.



We show qualitative results in Fig. 7 (a) by running forward-inference on this joint
model. Note that our model is able to predict fine-grained class labels not present in
the PASCAL VOC dataset. As shown in Fig. 7 (a), our joint network predicts accu-
rate bounding box locations for all bird objects in an image. In addition, our network
is good at recognizing subtle color (e.g. Red headed woodpecker in row 2 column 3,
Gray Catbird in row 2 column 4, Red bellied woodpecker in row 3 column 2 and White
crowned sparrow in row 3 column 3) and shape variations (e.g. difference between Mal-
lard and Herring Gull in row 3 column 1). In Fig. 7 (b), the model is able to recognize
subtle differences between two similar-looking cars with the same color (e.g. ”Jaguar
XK XKR 2012” in row 2 column 1 vs. ”BMW M6 Convertible 2010” in row 3 column
4) and partial object with occlusion (e.g. ”Mercedes Benz SL Class Sedan 2012” in row
1 column 5). For object classes not present in the Stanford Cars dataset, the network is
able to assign a label with a closest visual match (e.g. ”Dodge Challenger SRT8 2011”
in row 1 column 3).

5 Conclusion

In this work we have presented a framework to detect and classify fine-grained objects.
To evaluate performance, we have created a new benchmark for fine-grained recog-
nition. Experiments show that our approach performs favorably against competitive
methods. In summary, our network structure provides more desirable characteristics for
practical computer vision applications and reaches good balance between the model
size, computational complexity and accuracy. Our system can be used to add visual
intelligence to mobile devices. This feature is particularly useful for ornithologists or
car enthusiasts who wish to identify or search for a particular object of interest. In the
future, we plan to leverage post-training quantization techniques to compress our joint
model and enable fast forward-inference on mobile apps.
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