
3D Visual Object Detection from Monocular Images

Anonymous Authors

Anonymous Institutes

Abstract. 3D visual object detection is a fundamental requirement for autonomous
vehicles. However, accurately detecting 3D objects was until recently a qual-
ity unique to expensive LiDAR ranging devices. Approaches based on cheaper
monocular imagery are typically incapable of identifying 3D objects. In this pa-
per, we propose a novel approach to predict accurate 3D bounding box locations
on monocular images. We first train a generative adversarial network (GAN) to
perform monocular depth estimation. The ground truth training depth data is ob-
tained via depth completion on LiDAR scans. Next, we combine both depth and
appearance data into a birds-eye-view representation with height, density and
grayscale intensity as the three feature channels. Finally, We train a convolutional
neural network (CNN) on our feature map leveraging bounding boxes annotated
on corresponding LiDAR scans. Experiments show that our method performs fa-
vorably against baselines.

Keywords: 3D Object Detection · Depth Estimation · Monocular Vision.

1 Introduction

In the past few years, new types of LiDAR (Light Detection And Ranging) sensors have
been developed for autonomous vehicles. These sensors provide an accurate 3D per-
ception of the surrounding environment in real-time. As a result, several LiDAR-based
classification, detection, and segmentation datasets are made available to public [10].
LiDAR is popular and advantageous compared to traditional stereo or multi-camera
ranging devices for a variety of reasons. Firstly, LiDAR is able to give accurate mea-
surements invariant of the ego car distance, while camera based ranging algorithms
typically give a degraded performance on distant objects. This is because the object
size reduces quadratically with distance to the camera for most imaging sensors. Sec-
ondly, LiDAR is an active time-of-flight (ToF) sensing device which works on a variety
of objects including specular/metallic surfaces and textureless regions. Also, depend-
ing on the wavelength, LiDAR devices have certain levels of see-through capability on
transparent objects (e.g. cloud, rain, snow). On the contrary, computer vision algorithms
operating on camera sensors will start to fail when reflective/textureless/transparent re-
gions increase. Finally, most LiDAR devices give 360-degree surrounding scans and
immediate reading of orientation and distance to the object, whereas camera sensors
usually have limited field-of-view (FOV) and multi-camera calibration issues, plus ad-
ditional computation overheads to produce depth maps from raw input images. In the
2007 DARPA Urban Challenge, a team [20] finished in the second place using LiDAR
alone with no camera sensors involved. Despite its advantages, there are a few major

drawbacks of LiDAR sensors. Firstly, they are typically bulky and expensive for wide
use and deployment. Secondly, even top-of-the-line LiDAR sensors only provide 64 or
128 sparse scanlines across the 3D space, while camera sensors operate at a much higher
resolution (typically ranging from 5 to 20 megapixels). Finally, LiDAR signals are in-
herently limited to spatial information and do not provide what cameras can typically
see, such as words on the traffic sign, color, and pattern of the vehicle, etc. Therefore, it
is still important to keep the camera sensors as a supplementary/fall-back option.

Fig. 1: Sample output and intermediate results from our pipeline (Best viewed electron-
ically). Top left: Our predicted 3D bounding boxes (red) vs. ground-truth annotations
on the KITTI dataset (green). Top middle: predicted depth map. Top right: 2D detec-
tion results on our depth map projected to the birds-eye-view (BEV) map. Bottom: Our
transformed point cloud aligned with LiDAR scanlines. The intensity values on our
point cloud are calculated using grayscale intensity values from the input RGB image.

Intuitively, depth data provide more useful descriptions of spatial information, while
appearance data provide more visual cues to identify objects into different categories.
Therefore, when combining semantically rich appearance data with depth information,
one can improve the performance of both locating and categorizing objects in an im-
age. Early research attempts to combine simple depth cues with image features for
richer representation [25]. However, due to difficulty in propagating gradients in the
model, simply stacking features from different modalities could not give satisfactory
performance. Gupta et al. proposed to use horizontal disparity, height above ground,
and angle with the direction of gravity to form another 3 channel image for training
[13]. Due to difficulty on training these type of feature maps, it is a common practice
to finetune on existing models trained on RGB images [26]. However, it is questionable
whether this way of inter-model fusion is reasonable as depth features seldom resemble

shape, color, and appearance from the visible light spectrum. Lenz et al. proposes to
learn features from RGB and depth images separately and then fuse at a higher level
[17]. This method is termed Late Fusion by Eitel et al. [7]. Most work on 3D detection,
on the other hand, are either purely based on LiDAR data [4, 24] or simply use visual
cues to supplement LiDAR data [21, 18].

In this paper, we propose a novel approach to leverage both depth and visual cues
for 3D object detection on monocular images. At the core of our technique is to inte-
grate appearance and structural cues for better object detection. Our method contains
three stages. Firstly, we use an unpaired image to image translation network to learn
bi-directional transformations from RGB images to depth maps. Secondly, we calcu-
late height, density and grayscale intensity as 3 feature channels and project the feature
map to a birds-eye-view representation. Finally, we take advantage of 3D bounding box
annotations on LiDAR data and train our object detection model on the feature map.
The rest of this paper is organized as follows. In Section 2 we discuss related work.
In Section 3 we demonstrate different components of the proposed method. We show
experimental results and analysis in Section 4, 5 and draw conclusions in Section 6.

RGB
Image Depthmap

Feature
 Map

3D Object
Detection

RGB
Image

 Fake
 Depthmap

 Depth
Discriminator

 Fake
 RGB Image

RGB Image
Discriminator

 Depthmap Feature
 Map

3D annotation
on LiDAR Data

CycleGAN Training Complex YOLO Training

Inferencing

Fig. 2: Architecture of our network. Top left: our CycleGAN based depth prediction
network. Top right: our 3D detection network based on Complex YOLO. Bottom: our
network for inference. Note that for training our method requires both monocular im-
ages and aligned LiDAR scans. However, for inference we only need monocular images
to predict 3D object locations and categories. See Section. 3 for details.

2 Related Work

Dual Learning The idea of using forward and backward consistency to improve train-
ing has a long history [5]. Recently, He et al. [14] proposed the concept of dual learn-
ing to improve the performance of machine translation systems. The proposed mecha-
nism can be viewed as a two-agent communication game. The two agents may not be
able to translate one language to another, but are still able to evaluate and collectively
improve the quality of the two translation models by going through the full forward-
backward translation cycle. This procedure can be performed by an arbitrary number of

rounds until the two models are fully converged. This idea inspired conditional GANs
based cross-domain translation tasks [29] and improves performance in image-based
depth/shape estimation tasks. [11, 28]. In this paper, we choose to use GAN for depth
prediction because it allows unpaired image domain transfer, while other depth predic-
tion models are usually dependent on LiDAR input guidance.

Image-to-Image Translation The idea of learning from a pair of images and then apply
the model at inference time to produce an analogous target image from the input image
dates back to [15]. More recently, Isola et al. [16] proposed a method which exploits
conditional adversarial networks as a unified framework for image to image transla-
tion. It uses the L1 loss function to enforce generated synthetic images to be similar
to ground truth training images while letting GANs to only hallucinate high-frequency
details in the image. This is because the L1 loss can already guarantee similarity at low
frequencies. Therefore, instead of processing the whole image, the discriminator only
attempts to classify if a N ×N image patch is correct or not. This method produces re-
markable results on a variety of tasks, including photographs from sketches, automatic
colonization of black and white images, raw images to label maps, thermal to visible
light images, and so on.

3D Object Detection on LiDAR data Recent advance in sensor and computing tech-
nology enables 3D object detection on structural data. Due to the difficulty in processing
large-scale point cloud data, most works preprocess the raw input data into either voxels
or birds-eye-view maps (BEV). Chen et al. converts LiDAR data to a BEV represen-
tation for 3D object detection in the road scene [6]. Liang et al. develop a 3D object
detector that reasons in BEV space and integrates visual cues by learning to project
camera-based features into the BEV space [18]. YOLO3D [4] extends the 2D YOLOv2
object detector [22] to the BEV map and achieves real-time performance on the KITTI
dataset. Complex-YOLO [24] also operates on the BEV map by running an E-RPN that
estimates object orientations by both imaginary and real numbers.

3D Object Detection on RGB Images More recent publication [27] introduces the
concept of pseudo LiDAR, arguing that by converting the image-based depth maps to a
representation that closely mimics the LiDAR signal, one could obtain state-of-the-art
results on stereo vision based 3D object detection. Our method is along the lines of
performing 3D object detection on RGB images. However, our method differs from the
pseudo-LiDAR approach in a few aspects. Firstly, our detection is performed on a fea-
ture map consists of height, density, and grayscale intensity information. This feature
map combines both depth and visual cues and is not intended to mimic the LiDAR sig-
nal. Secondly, our method leverages unpaired adversarial learning to predict the depth
map, eliminating the need for collecting pairwise-aligned RGB and depth data, thus
making it much easier to apply to use cases other than autonomous driving (e.g. indoor
scenes, close-up scenes, top-down surveillance videos, etc.)

3 Approach

3.1 Depth Estimation

We adopt the CycleGAN [29] for depth estimation from monocular images. We use
the sparse to dense [19] depth completion results on KITTI LiDAR scans as groudtruth
for training. The learning objective contains 2 terms: an adversarial loss and a cycle
consistency loss:

L(G,F,DX , DY) =
γadvLadv(G,DX , DY , X, Y) + γcycLcyc(G,F)

(1)

Where γadv , γcyc are the hyper-parameters to adjust loss on each term and are em-
pirically set during the experiment. {xi ∈ X}Ni=1 and {yi ∈ Y }Ni=1 are N training
images from the RGB dataset and depth dataset, respectively. G and F are mapping
functions G : X → Y and F : Y → X to transform RGB images to depth maps
or vice versa. DX and DY are adversarial discriminators to distinguish between real
images {x} and synthetic images {F (y)}, or {y} with {F (x)}. The cycle consistency
loss is defined as:

Lcyc(G,F) =Ex ∼ pdata(x)[‖F (G(x))− x‖]
+Ey ∼ pdata(y)[‖G(F (y))− y‖]

(2)

It can be viewed as translating an RGB image into a depth image and then translate it
back to compare with the original using L1 norm. Based on the cycle consistency loss,
two discriminators DX and DY are introduced to calculate the adversarial loss [12].
This term enforces the distribution of translated images to be as close to the training
images as possible. The adversarial loss is defined as:

Ladv(G,F,DX , DY , X, Y) =

= Ey ∼ pdata(y)[logDY (y)] + Ex ∼ pdata(x)[logDX(x)]

+ Ex ∼ pdata(x)[log(1−DYG(x))]

+ Ey ∼ pdata(y)[log(1−DXG(y))]

(3)

By using the above two loss terms we aim to minimize adversarial discriminator errors
of both visual and structural cues, as well as L1 error of predicted images vs. original
images.

3.2 Feature Map Generation

Once we obtained the trained GAN model for depth prediction, we would like to trans-
form the depth map from camera coordinate system to the LiDAR coordinate system
for alignment with ground-truth bounding box annotations. In order to do this, we first
transform the depth map to the rectified (rotated) camera coordinate system:

zrect = D(u, v)

xrect =
(u− cu)× zrect

fu
+ bx

yrect =
(v − cv)× zrect

fv
+ by

(4)

Fig. 3: Bidirectional transforms between LiDAR and camera coordinates (Best viewed
electronically). Top left: LiDAR scans provided by the KITTI dataset projected to the
camera imaging plane, color-coded by depth. Middle left: LiDAR scans projected to
the corresponding RGB image. Bottom left: predicted depth map with one-to-one map-
pings to the input image. Top right: predicted depth map transformed to the LiDAR
coordinates, color-coded by one channel grayscale intensity. Middle right: LiDAR scan
color-coded by intensity/reflectivity. Bottom right: our transformed point cloud aligned
with the LiDAR scan. Note the LiDAR has a much wider field of view (FOV).

Where (xrect, yrect, zrect) is the 3D point coordinate in the rectified camera coordi-
nates. (u, v) denotes a pixel location in the predicted depth map. (cu, cv) is the pixel
location corresponding to the imaging center, fu, fv are the horizontal and vertical fo-
cal length and bx, by are the baselines with respect to reference camera. The camera
intrinsic can be obtained from the projection matrix provided by [10]:

Prect =

fu 0 cu −fubx
0 fv cv −fvby
0 0 1 0

 (5)

Next, we transform the 3D point cloud from rectified camera coordinates to reference
camera coordinates and then to the LiDAR coordinates by calling the KITTI utility
library[2]. Let Tvelo

cam be the 4 × 4 transformation matrix from the camera coordinate
system to the LiDAR coordinates, Rrect be the 4×4 rectifying rotation matrix converted
from Cartesian to homogeneous coordinates by adding a fourth zero row and setting
Rrect(4, 4) = 1, Pvelo and Prect ∈ R3 be the 3D point coordinates in the LiDAR and
rectified camera coordinates, we can write the transformation as:

Pvelo = Tvelo
cam R−1rect Prect (6)

Note that we also store the RGB value and index of each point in another table to obtain
the RGBXYZ representation of Pvelo. Next, we perform preprocessing in a fashion
similar to Complex YOLO [24] to transform Pvelo into the BEV feature map. The only
difference between Complex YOLO and our method is that we are using grayscale

intensity (visual) as the blue channel of the image while Complex YOLO sets the blue
channel to LiDAR intensity (reflectivity). More formally, let S be the mapping function
to map each point in Pvelo to a grid cell Sbev [24], we can formulate the transformation
as:

fg

(
Sjbev

)
= max

(
Pivelo→bev · [0, 0, 1]T

)
fb

(
Sjbev

)
= max

(
I
(
Pivelo→bev

))
fr

(
Sjbev

)
= min(1.0, log(

∣∣Pivelo→bev∣∣+ 1)/64)

(7)

Where f is the resulting 3-channel feature map. fg , fb, fr denotes height map, grayscale
intensity map and density map, respectively. I is the grayscale intensity of Pvelo cal-
culated from the RGB values. Pvelo→bev denotes the 3D points mapped to the grid cell
Sbev . To this end, we have constructed the feature map which is aligned with LiDAR
3D object bounding box annotations ready for training. We visualize the height, density
and intensity maps of both LiDAR data and predicted depth data in Fig. 5. We also show
the alignment of LiDAR data vs. our transformed point cloud in Fig. 3. As can be seen
from Fig. 3, the LiDAR scanlines are accurately projected onto the camera coordinates.
Also, the transformed point cloud is well-aligned with LiDAR data. It is worth-noting
that the field of view (FOV) of LiDAR is much larger than the camera. This is reflected
in both Fig. 3 (row 1 column 2 vs. row 2 column 2) and Fig. 5 (first row vs. second
row). Therefore, unlike other methods, during mAP evaluation we only compare with
ground-truth bounding box annotations that falls within the camera FOV.

Fig. 4: Training loss visualization using TensorBoard [3]. Top: training loss on class
labels, Euler region proposals and object length. Bottom: training loss on object width,
horizontal and vertical locations. See Section. 4 for details.

3.3 3D Object Detection

We follow the Complex YOLO model architecture put forth by [24] to train the 3D
object detector. This detector takes the BEV feature map mentioned in Section. 3.2
as input, and extends the YOLOv2 detector [22] by a complex angle regression and
a Euler region proposal networks (E-RPN). The E-RPN is a direct extension of the
region proposal networks (RPN) proposed by Ren et al. [23]. Specifically, consider
(x, y, w, l, φ) as a vector describing 2D locations, size and orientations of 3D objects in
the BEV coordinates, the parameterizations of the 5 coordinates can be obtained as [23,
24]:

bx = σ (tx) + cx, by = σ (tx) + cy

bw = pwe
tw , bl = ple

tl

bφ = arg
(
|z|eibφ

)
= arctan2 (tIm, tRe)

(8)

The loss function of Complex YOLO is defined as a multi-part loss. The first part is the
YOLOv2 loss [22] and the second part is an Euler regression loss:

LTotal = LYOLO + LEuler

LEuler = λcoord

S2∑
i=0

ΣB
j=01

obj
ij

∣∣∣eibφ − eib̂φ ∣∣∣ (9)

According to the authors, the Euler loss leads to a closed-form space eliminating singu-
larities. This leads to state-of-the-arts results on the KITTI 3D object detection dataset,
while achieving real-time performance on the embedded NVIDIA TX2 platform [24].

Fig. 5: Feature map visualization (Best viewed electronically). Top: Our combined BEV
feature map, density map, height map and grayscale intensity map. Bottom: Feature
map, density map, height map and intensity map on corresponding LiDAR scans used
by Complex YOLO [24]. See Section. 3.2 for details.

4 Experiments

We use the KITTI 3D object detection benchmark suite for training and evaluation. The
KITTI 3D object detection benchmark consists of 7481 training images as well as the

corresponding point clouds, training labels and camera calibration files. We first use
the supervised model [19] provided by the author to obtain depth maps for all training
images. We subsequently perform a random train (60%) / validation (25%) / test (15%)
split and use the code provided by the author [29] for training the CycleGAN model.
The model is trained from scratch with random weight initialization. We set base learn-
ing rate = 0.0002, gamma = 0.5, momentum = 0.5. We train for 200 epochs and use the
CycleGAN model for constructing BEV feature maps.

Next, we modify the Complex YOLO framework by constructing feature maps on-
the-fly during training. We still use the same train/validation sets and construct the BEV
feature map for every image. We run CycleGAN inference on every image to obtain the
depth map, then follow the transformations outlined in Section. 3.2 to obtain the 3-
channel feature map as input for the Complex YOLO framework. Our implementation
is based on the open source code provided by [1]. The ground-truth labels are obtained
by converting 3D bounding box labels to 2D bounding boxes in the BEV coordinates.
We set the base learning rate = 0.0001, gamma = 0.5, momentum = 0.9 and batch size
= 32. We train for 700 epochs with four NVIDIA Titan V GPUs. The training losses
mentioned in Section 3.3 are visualized in Fig. 4 using TensorBoard [3] until the 600th
step (∼ 4 epochs).

0 200 400 600 800 1000 1200 1400 1600
Person_sitting

Tram

Truck

Cyclist

Van

Pedestrian

Car

 5
 1

9
 3

0
 7

3
 1

2
3

 1
8
4

 1
4
2
7

0.5 0.6 0.7 0.8 0.9
recall

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

p
re

c
is

io
n

mAP@different IoU

Car

Tram

Truck Van

Fig. 6: Dataset statistics and precision-recall curve. Left: Number of objects per class
in the KITTI dataset. Right: mean Average Precision (mAP) values on the car, truck,
van and tram classes across varying Intersection-over-Union (IoU) values. Note that the
performance of our model is robust to stricter IoU criterias and the performance only
begins to significantly degrade when IoU is bigger than 0.6.

Similar to [24] which perform PASCAL VOC [9] style mean Average Precision
(mAP) evaluation on its own test set split, we run mAP on 2D bounding boxes in the
BEV space. There is one difference from our evaluation scheme vs. LiDAR-based meth-
ods: since LiDAR data has much wider FOV, we only evaluate against ground-truth
bounding boxes that fall within our camera FOV. This means that we are not consid-
ering ground-truth labels that are too far away, or outside of our camera view frustum.
Also, since our predicted depth map is not able to capture fine structures of small ob-
jects like LiDARs do, we only evaluate on four categories including car, tram, truck and

Method Train Test Car Tram Truck Van
MV3D [6] LiDAR+RGB LiDAR+RGB 86.02 N/A N/A N/A
C-YOLO [24] LiDAR LiDAR 85.89 N/A N/A N/A
Ours LiDAR+RGB RGB 78.78 58.70 80.00 74.14

Table 1: Quantitative mAP results. Note that we only evaluate within the visible range
of the predicted depth map/point cloud, whereas all other methods evaluate on the full
LiDAR scan. Also, our method and ComplexYOLO report scores on the random test
split while MV3D evaluate on the test set. Both MV3D and ComplexYOLO scores are
reported under the easy category of the BEV evaluation task. See Section. 4 for details.

van. As shown in Fig. 6, these four (out of seven) categories consist of more than 85%
of objects in the KITTI 3D object detection dataset. We also vary the IoU threshold
from 0.5 to 0.9 with a 0.1 interval and recalculate the mAP scores. We show the mAP
scores at different IoU thresholds in Fig. 6. Compared to existing methods, our frame-
work is one of the few that directly performs inference on RGB images. We compare
with MV3D [6] and Complex YOLO [24] results in Table 1. The scores of MV3D and
Complex YOLO are adopted from the original paper in the BEV category with easy
difficulty. Easy difficulty is defined according to the bounding box height and occlu-
sion/truncation levels. In general, the easy task corresponds to cars within 30 meters of
the ego-car distance, according to [27]. Note that the effective range of our transformed
point cloud is shorter than this 30-meter range. Also, the Complex YOLO scores are
reported on the test split (similar to our evaluation) whereas the MV3D reports on the
KITTI test set.

5 Discussion

We show quantitative PR-curve evaluations in Fig. 6 and compare with other methods
in Table 1. As can be seen from Fig. 6, our method achieves satisfactory results on
car, truck, van and tram categories, and the car category demonstrates the highest mAP
scores across varying IoUs. This may due to the fact that cars are more common in
real-life scenes and thus easier to recognize. Also, because the categories in the KITTI
dataset is highly imbalanced, it is possible that the car class is over-represented and the
classifier is biased towards this single class. In the future, we plan to test our approach
on an evenly sampled 3D object detection dataset with more diverse examples. Accord-
ing to Fig. 6, the mAP starts to dramatically decrease only when the IoU value is more
than 0.6. This shows that our detector is robust to stricter evaluation criteria, which is
generally more desirable for complex real-life scenes. Also, according to Table 1, our
method is competitive when compared to other LiDAR-based methods, even though
our network only uses RGB images as input to perform forward inference. We visual-
ize the qualitative results in Fig. 7. Our approach works well in cluttered scenes (e.g.
row 1 and 2). It might be difficult for appearance-based methods to separate vehicles
parked closely together (row 2 column 1), but our method makes accurate depth pre-
dictions and the BEV map (row 2 column 2) makes it much easier to learn the relative

locations of the vehicles. However, for small objects and thin structures (e.g. pedestrian
in row 3 and 4), our network is not able to capture, as the predicted depth maps are not
as accurate as LiDAR scans. Also, our method takes both structural (e.g. height) and
visual cues for inference. For example, in the last row, the closest and farthest objects
are wrongly classified as vans while the middle object is correctly classified as a car.
This is because our feature map also contains the height map. The SUV and MPV in the
front and back are taller than the sedan in the middle, which possibly leads to the wrong
classification result. In general, Fig. 7 demonstrates that the bounding box predictions
(structural) are more accurate than class predictions (visual appearance). This implies
that our network is good at localizing objects but is still having difficulties learning vi-
sual features of an object. This can also be observed in Fig. 4, where the classification
loss curve shows more oscillations than bounding box coordinates (x and y). Although
the learning objective is designed to minimize both classification and localization er-
rors, it is interesting to see what roles the structural and visual cues play, and when one
overwhelms the other. In the future, we plan to train and test on more datasets and visu-
alize neuron activation heatmaps in each channel (height, density and color intensity).

6 Conclusion

In this paper, we have presented a framework to detect and classify 3D objects from
monocular images. Experiments show that our approach performs favorably against
competitive methods trained on LiDAR data. Our method leverages generative adver-
sarial networks to perform monocular depth estimation. The training groudtruth are
obtained by completing LiDAR scans. The GAN approach is more flexible in terms of
extending to other computer vision tasks. On the contrary, traditional monocular depth
prediction networks are heavily dependent on pair-wise color-to-depth alignment and
LiDAR input. Also, we integrate both visual and structural cues into the feature map
representation, which distinguishes our method from those purely operating on LiDAR
data, and those who learn depth from a monocular image but still perform detection on
the pseudo LiDAR data (ignoring visual information). Our system can be used to add
visual intelligence to smart vehicles, which is particularly useful for improving camera-
based advanced driver-assistance systems (ADAS) for L3 level autonomy. Also, our
system could be used as a supplementary or fall-back option to LiDAR sensors. In the
future, we plan to include spatiotemporal data to improve both depth prediction (e.g.
optical flow) and object detection (e.g. YOLO4D [8]).

References

1. Complex yolo with uncertainty. https://github.com/wl5/complex yolo 3d
2. pykitti open source utility library. https://github.com/utiasSTARS/pykitti
3. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irv-

ing, G., Isard, M., et al.: Tensorflow: A system for large-scale machine learning. In: USENIX
Symposium). pp. 265–283 (2016)

4. Ali, W., Abdelkarim, S., Zidan, M., Zahran, M., El Sallab, A.: Yolo3d: End-to-end real-time
3d oriented object bounding box detection from lidar point cloud. In: ECCV. pp. 0–0 (2018)

Fig. 7: Qualitative results on the KITTI dataset. Left: our 3D bounding box predictions
(red) vs. ground-truth (green) annotations projected to the camera imaging plane. Right:
our 2D bounding box predictions (red) on the BEV map vs ground-truth (green) anno-
tations. Note that the camera optical axis is facing down on the BEV map for better
visualization. See Section. 5 for details.

5. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceed-
ings annual conference on Computational learning theory. pp. 92–100. ACM (1998)

6. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3d object detection network for au-
tonomous driving. In: CVPR. pp. 1907–1915 (2017)

7. Eitel, A., Springenberg, J.T., Spinello, L., Riedmiller, M., Burgard, W.: Multimodal deep
learning for robust rgb-d object recognition. In: IROS. pp. 681–687. IEEE (2015)

8. El Sallab, A., Sobh, I., Zidan, M., Zahran, M., Abdelkarim, S.: Yolo4d: A spatio-temporal ap-
proach for real-time multi-object detection and classification from lidar point clouds (2018)

9. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual
object classes (voc) challenge. IJCV 88(2), 303–338 (2010)

10. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: The kitti dataset. IJRR
32(11), 1231–1237 (2013)

11. Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with
left-right consistency. In: CVPR. vol. 2, p. 7 (2017)

12. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., Bengio, Y.: Generative adversarial nets. In: NIPS. pp. 2672–2680 (2014)

13. Gupta, S., Girshick, R., Arbeláez, P., Malik, J.: Learning rich features from rgb-d images for
object detection and segmentation. In: ECCV. pp. 345–360. Springer (2014)

14. He, D., Xia, Y., Qin, T., Wang, L., Yu, N., Liu, T., Ma, W.Y.: Dual learning for machine
translation. In: NIPS. pp. 820–828 (2016)

15. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In:
Conference on Computer graphics and interactive techniques. ACM (2001)

16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional ad-
versarial networks. arXiv preprint (2017)

17. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. IJRR 34(4-5), 705–
724 (2015)

18. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3d
object detection. In: ECCV. pp. 641–656 (2018)

19. Mal, F., Karaman, S.: Sparse-to-dense: Depth prediction from sparse depth samples and a
single image. In: ICRA. pp. 1–8. IEEE (2018)

20. Montemerlo, M., Becker, J., Bhat, S., Dahlkamp, H., Dolgov, D., Ettinger, S., Haehnel, D.,
Hilden, T., Hoffmann, G., Huhnke, B., et al.: Junior: The stanford entry in the urban chal-
lenge. Journal of field Robotics 25(9), 569–597 (2008)

21. Qi, C.R., Liu, W., Wu, C., Su, H., Guibas, L.J.: Frustum pointnets for 3d object detection
from rgb-d data. In: CVPR. pp. 918–927 (2018)

22. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: CVPR. pp. 7263–7271 (2017)
23. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detection with

region proposal networks. In: NIPS. pp. 91–99 (2015)
24. Simony, M., Milzy, S., Amendey, K., Gross, H.M.: Complex-yolo: an euler-region-proposal

for real-time 3d object detection on point clouds. In: ECCV. pp. 0–0 (2018)
25. Socher, R., Huval, B., Bath, B., Manning, C.D., Ng, A.Y.: Convolutional-recursive deep

learning for 3d object classification. In: NIPS. pp. 656–664 (2012)
26. Song, S., Lichtenberg, S.P., Xiao, J.: Sun rgb-d: A rgb-d scene understanding benchmark

suite. In: CVPR. vol. 5, p. 6 (2015)
27. Wang, Y., Chao, W.L., Garg, D., Hariharan, B., Campbell, M., Weinberger, K.: Pseudo-lidar

from visual depth estimation: Bridging the gap in 3d object detection for autonomous driving.
arXiv preprint arXiv:1812.07179 (2018)

28. Zhou, T., Krahenbuhl, P., Aubry, M., Huang, Q., Efros, A.A.: Learning dense correspondence
via 3d-guided cycle consistency. In: CVPR. pp. 117–126 (2016)

29. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-
consistent adversarial networks. In: ICCV (2017)

