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Abstract— In this paper, we focus on 3D point cloud classifi-
cation by assigning semantic labels to each point in the scene.
We propose to use simplified Markov networks to model the
contextual relations between points, where the node potentials
are calculated from point-wise classification results using off-
the-shelf classifiers, such as Random Forest and Support Vector
Machines, and the edge potentials are set by physical distance
between points. Our experimental results show that this ap-
proach yields comparable if not better results with improved
speed compared with state-of-the-art methods. We also propose
a novel robust neighborhood filtering method to exclude outliers
in the neighborhood of points, in order to reduce noise in
local geometric statistics when extracting features and also
to reduce number of false edges when constructing Markov
networks. We show that applying robust neighborhood filtering
improves the results when classifying point clouds with more
object categories.

I. INTRODUCTION

As robot navigation tasks become more complicated and
challenging, range finding devices that can capture 3D point
clouds of the environment start to be standard equipments
for mobile robot systems. Point clouds contain valuable
geometric information of scenes which is ambiguous and
unreliable if otherwise recovered from single image or stereo
images. Therefore, automated point cloud interpretation is
important for autonomous robot navigation tasks such as
obstacle avoidance, object detection, and environment mod-
eling. Processing 3D point clouds is by no means easier than
processing 2D images, even though the former circumvents
the ambiguity induced by 3D to 2D projection. Unlike
images that can be naturally represented as intensity or color
functions explicitly defined over spatial locations, geometric
information contained in 3D point clouds is implicit and
purely represented by the spatial arrangement of the observed
points. Additionally, laser sensors irregularly sample points
from objects and the viewpoint from which objects are
perceived can largely vary, and thus, 3D point clouds are
usually sparse and locally ambiguous in geometric appear-
ance. In order to solve these problems, utilizing contextual
information and modeling contextual relations is always
essential for point cloud processing.

In this paper, we focus on 3D point cloud classification
by assigning semantic labels to points in the scene. We
first extract features that incorporate both local geometric
statistics and global contextual information of the point
cloud. We then use simplified Markov networks to model
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(a) RNF RF MRF

(b) M3N [1]

Fig. 1. Example classification results of the CMU Oakland 3D point
cloud data set. (a) Results obtained from our method RNF RF MRF. It
performs robust neighborhood filtering (see Section IV for explanation),
and uses classification results obtained from a random forest classifier for
calculating node potentials of Markov networks (see Section III for details).
(b) Reproduced results obtained from M3N proposed in [1]. Color scheme:
green-vegetation, orange-wire, red-pole/trunk, gray-ground, blue-facade.

the contextual relations between points, where the node
potentials are calculated from point-wise classification results
using standard classifiers, such as Random Forest (RF) and
Support Vector Machines (SVM), and the edge potentials
are set by physical distance between points. In addition, we
apply robust neighborhood filtering for excluding outliers
in the neighborhood of points, in order to reduce noise in
local geometric statistics when extracting features and also to
reduce the number of false edges when constructing Markov
networks. Fig. 1 shows snapshots of labeling results1 of
the CMU Oakland 3D point cloud data set obtained from
our method RNF RF MRF and M3N (Max Margin Markov
Random Networks) proposed in [1], respectively.

In previous work [2][3][4][5], formulating point cloud
classification problem within a MRF or Conditional Random
Field (CRF) framework has proven to be an appropriate
choice because it utilizes contextual information to produce
improved classification results over locally independent clas-
sifiers. In this paper, instead of learning weight vectors for
calculating node and edge potentials of Markov networks,
we obtain node potentials from point-wise classification
results, and obtain edge potentials directly from the physical
distance between points. Classifying new data using our
simplified MRF is significantly faster than methods that learn
node and edge weights for constructing Markov networks,
such as M3N [1], and timing is an important factor when

1This paper is best viewed in color.
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considering running a method on board. Another contribution
of this paper is that, in the phases of feature extraction and
Markov network construction, we propose a novel robust
neighborhood filtering method to exclude outliers in the
neighborhood of a point. By applying such filtering, we
reduce noise in local geometric statistics and eliminate false
edges in Markov networks that cause over smoothed-out
effect after minimizing energy for Markov networks. We
show in Section V-B that robust neighborhood filtering
improves final classification results.

This paper is organized as follows. We first review related
work in Section II. Then, we describe in Section III the
simplified MRF framework, including the way we construct
Markov networks and the way we calculate node and edge
potentials. In Section IV, we explain in detail our robust
neighborhood filtering method for excluding outliers in the
neighborhood of a point. In section V, we show, compare,
and discuss the classification results obtained from our
method and state-of-the-art methods. Finally in section VI,
we conclude and propose the future work.

II. RELATED WORK

One way of 3D scene interpretation is through classi-
fication, where each 3D point is assigned a unique label
that can either be conceptual (scatter, linear, surface, etc.)
[6] or semantic (ground, building, vegetation, etc.) [2][1][7].
We have seen point cloud classification for various types of
environments, such as urban [4][1][8], naturally unstructured
[6][9], indoor [5][10], and aerial [7]. Some work process
directly on the original point cloud [2][11], and the others
over-segment the cloud and take voxel or supervoxel as the
processing element for efficiency purposes [4][12][5]. Spin
images [13], spectral and directional features [12], height
distribution along vertical columns, etc., have been used as
geometric features.

Supervised learning methods are usually adopted for point
cloud classification. Lalonde et al. [6] train a Gaussian mix-
ture model using the expectation maximization algorithm,
and predict new data with a Bayesian classifier. In [9],
the authors presented a two-stage approach for identifying
ground points from point clouds, with the first stage filtering
out non-ground points based on local height and the second
stage applying SVM on a set of geometric features to identify
which of the remaining points belong to the ground. Lai et
al. [8] propose a data-drive technique that leverages data
sets available on the world wide web for training in order to
reduce the need for manually labeled training data.

Inferring labels solely based on local features as in [6][9] is
very difficult because it ignores spatial context information.
To address such a limitation, most approaches attempt to
model relations between points, typically through a graphical
model such as CRF or MRF, and infer point labels using
energy minimization algorithms such as graph cuts and
belief propagation. Anguelov et al. [2] and Munoz et al. [1]
apply max-margin learning to obtain node and edge weight
vectors for constructing a Markov network. Lim et al. [4] use
maximum a posteriori estimation to obtain the weights for

constructing a conditional random field. In [3], the authors
extend the popularly used Associative Markov Network
(AMN) to learn directionality in clique potentials, and such
an anisotropic model is aimed for better classification of finer
objects such as poles and power lines in point clouds. Going
beyond directional AMN, Shapovalov et al. [7] propose non-
associative Markov networks for classification realized by
a message passing algorithm. Xiong et al. [11] design and
train an inference procedure via a sequence of predictions
from simple machine learning modules instead of using a
single graphical model for modeling the contextual relations
between points.

In this paper, we use MRF to model the contextual rela-
tions between points, but the way we obtain nodes and edge
potentials of Markov networks are different from those in
[2][3][4][1]. We apply standard machine learning algorithms,
such as RF and SVM, for single point classification as a
preprocessing step, and calculate node potentials from those
classification results. We directly use point distance for edge
potentials without learning edge weights. We find that RF
is superior to max-margin style learning [2][1] because the
randomized procedure in the training stage avoids over-
fitting, especially when the amount of training examples are
huge and there is noise in the training data. In Section V-B,
we show that RF consistently produces better classification
results than those obtained from SVM, a typical max-margin
style learning algorithm.

III. SIMPLIFIED MARKOV RANDOM FIELDS USING
MACHINE LEARNING AS A PREPROCESSING STEP

In point cloud classification, we focus on Markov networks
over discrete variables Y = {Y1, ...,YN}, where each variable
corresponds to a point in the cloud that belongs to one of
the K labels, i.e., Yi ∈ {l1, ..., lK}. A Markov network for
Y defines a joint distribution over {l1, ..., lK}N , and such
a distribution can also be defined by an undirected graph
(V ,E ), where each node in V corresponds to a point in 3D
and each edge in E corresponds to the physical proximity of
the two points the edge links. In this paper, we use pairwise
Markov networks [2], where nodes and edges are associated
with potentials φi(Yi) and φi j(Yi,Yj), respectively. Intuitively,
φi(Yi) encodes a point’s individual preference for different
labels, whereas φi j(Yi,Yj) encodes the interactions between
labels of the two points the edge links. Once a Markov
network is constructed with node and edge potentials, we
can apply energy minimization algorithms [14] to find the
best possible label assignment to all the points.

A. Preprocessing Using Machine Learning

A point’s node potential, φi(Yi), encodes its prefer-
ence for different labels. In previous work [1][2][3][12],
logφi(Yi)(l) = wl

n · xi, where wl
n is the learned node weight

vector for label l and xi is the feature vector of the ith
node. In this paper, we calculate logφi(Yi) from per-point
classification results obtained from RF or SVM, two standard
classifiers that we are most interested in.
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1) Random Forest Classifier: Random Forest (RF) [15],
also called random trees, has been successfully used for tasks
such as human pose recognition [16] and image segmentation
[17]. It runs efficiently on large amount of data with better
classification accuracy than other algorithms because the
randomized procedure in the training stage avoids over-
fitting, especially when the amount of training examples are
huge and there is noise in the training data.

Each tree Tt in the forest is trained from different training
set Θt , which is a randomly selected subset of the entire
training data Θ such that |Θt | = αt |Θ|, where αt ∈ (0,1)
and | · | denotes size. At each node Ns of Tt , a subset of
feature variables νs is randomly selected from all the feature
variables ν such that |νs| = βs|ν |, where βs ∈ (0,1). From
νs, we select a feature variable for split that produces best
information gain calculated from entropy, and then split Θt
into left and right subsets. We recursively perform random
feature variable selection and node splitting based on infor-
mation gain for left and right subtrees. The stopping criteria
is that either Tt reaches maximum depth or the remaining
examples have the same classification. The randomization of
Θt for Tt makes RF robust to noise in the training dataset,
and the randomization of νs at each splitting node eliminates
the necessity of feature selection before the training stage. At
the prediction stage, RF takes the feature vector of a point as
the input, classifies it with each decision tree in the forest,
and outputs the label l that received the majority votes or
outputs p(l), the distribution of votes (preference) for labels.

2) Support Vector Machines: SVM [18] is initially in-
vented for building an optimal binary classifier. It maps
feature vectors into a higher-dimensional space using kernel
functions, such as linear function and radial basis function
(RBF), and then it calculates an optimal hyper-plane in the
space that best fits the training data. The solution is optimal
because the margin between the separating hyper-plane and
the nearest feature vectors from both classes is maximal,
and it is one of the max-margin style learning algorithms.
Feature vectors that are closest to the hyper-plane are called
support vectors. Now, SVM has been extended for multi-
class classification and used for point cloud classification in
[9]. One drawback of SVM is that it is not a robust method. If
there is noise in the training data, SVM tends to find the best
separating hyper-plane that also fits noise. At the prediction
stage, SVM takes the feature vector of a point as the input,
maps it into the high-dimensional space, and outputs the
predicted label l based on which side of the hyper-planes
the feature vector falls on.

B. Markov Network Construction

We calculate node potentials φi(Yi) based on the classifi-
cation results obtained from point-wise classifier such as RF
and SVM. For a node i, φi(Yi) = p(l) if a classifier outputs a
normalized distribution of preference for labels. Otherwise,
φi(Yi) = (θ1, ...,θK) with θl = 1 and θk = 0, for k ∈ [1,K]
and k 6= l, if the classifier outputs a predicted label l. In
previous work [1][2][3][12], edge potentials are calculated as
logφi j(Yi,Yj) = wl

e ·xi j, where wl
e is the learned edge weight

vector for label l and xi j is the feature vector of the edge i j.
In this paper, we use Potts model that rewards pairs of points
of the same label, and calculate edge potentials directly from
point distances as follows:

φi j(Yi,Yj) = ωi j, if Yi = Yj
= 0, otherwise, (1)

where ωi j encodes the physical proximity between node i and
j. We make an edge between nodes if their distance is smaller
than r. Based on that, we detect false edges between nodes
and break them using robust neighborhood filtering (see
Section IV for details), in order to reduce over smoothed-
out effect after minimizing energy for Markov networks.

C. Energy Minimization

Szeliski et al. [14] formulate maximum a posteriori esti-
mation of a Markov network into an energy minimization
problem, and the energy function E has two terms: data
energy Ed and smoothness energy Es. Data energy penalizes
solutions that are inconsistent with the observed data, and
smoothness energy enforces spatial coherence. Minimizing
Ed and Es is equivalent to maximizing node and edge
potentials. In Eqn. (2), we re-formulate potentials into data
and smoothness terms.

E = Ed +λEs

= ∑
i∈V

K

∑
l=1

(1−φi(Yi)(l))

+λ ∑
i j∈E

di j(1−δ (|Yi−Yj|)), (2)

where di j is the physical distance between node i and j, and
δ is the unit impulse function. Graph cuts [19][20][21] and
loopy belief propagation [22] are two popular optimization
algorithms used to minimize an energy function in Eqn. (2).

IV. ROBUST NEIGHBORHOOD FILTERING

Geometric information contained in 3D point clouds is
implicit and purely represented by the spatial arrangement
of the observed points. Defining a local neighborhood, Np,
around a 3D point p is essential for both geometric feature
extraction and contextual relation construction in MRF. k-
nearest neighbor (k-NN) and r-radius neighbor (r-RN) are
two commonly used algorithms for finding Np. k-NN defines
Np as k closest points in distance to p, whereas r-RN
includes all points that are within r distance to p as Np.

Finding k-NN of p is very fast using kd-tree data structure.
However, geometric statistics extracted from Np found by k-
NN is largely dependent on the density of the point cloud.
For a certain value of k, Np can be under-representative for
the dense part of a point cloud because the k points are too
close to each other to form a spatial span for extracting valid
local geometric features. Therefore, we use r-RN to find Np
in this paper, even though it is a little bit slower than k-NN.

Ideally, points in Np should be of the same label as p.
When finding neighbors using r-RN, it is inevitable to include
points from other category (we call them outliers), especially
at the intersections of different objects. Those outliers will
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(a)
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Fig. 2. Robust neighborhood filtering. Values of σp (a) and values of vnz
(c) are visualized in color with redder being smaller and bluer being larger.
In (c), we also show two zoomed-in details of intersection areas before
and after robust neighborhood filtering. All points that pass both point-ness
thresholding and dominant plane criteria are highlighted in red in (b).

poison local geometric statistics when extracting features,
and also lead to over smoothed-out effect after minimizing
energy for Markov networks. At the training stage, we can
easily remove outliers in Np because ground truth labels are
available. However, at the prediction and inference stages,
we have to make extra effort to exclude outliers.

We locate points near intersections and exclude outliers
in their neighborhood in two steps: 1) thresholding on
point-ness value, and 2) fitting a dominant plane. Points
near intersections tend to have large point-ness value, σp
(defined in [12]), which is a measure of scatterness of a local
neighborhood. Fig. 2a shows the value of σp visualized in
color of a point cloud C, and we locate points whose σp is
greater than a threshold, τp, calculated as follows:

τp = mp +ωpMADp, (3)

where mp and MADp are the median and the MAD (Median
Absolute Deviation) of σp over all points in C, respec-
tively, and ωp is the MAD multiplier that controls outlier
tolerance. From Fig. 2a we see that porous objects such
as vegetation also have large σp values. The scatterness of
vegetation points is due to their scattering nature, whereas
the scatterness of points near intersections is due to a mixture

of geometric entities brought in by different objects. To
differentiate these two types of scatterness, for every point
that passes point-ness thresholding, we fit a dominant plane,
P, for its Np using RANSAC. If the number of inliers is more
than a half of the total points in Np, P is the dominant plane
and points that are not on P are considered as from different
geometric entities, i.e. outliers, that should be excluded. Fig.
2b highlights in red all the points that pass both point-ness
thresholding (σp > τp) and dominant plane fitting criteria.
Points near the intersection between vehicle and ground,
and between low facade and ground are highlighted. A few
facade points get highlighted due to their local bumpiness,
and a few vegetation points are also highlighted. We discuss
in Section V-C how they affect the final classification results.

Fig. 2c shows the value of vnz for each point in C
visualized in color after robust neighborhood filtering, and
vnz is the scalar projection of a point’s normal direction, ~vn,
onto the z-axis. We also present zoomed-in details around
the intersections between facade and ground, and car and
ground before and after robust neighborhood filtering. After
neighborhood filtering, values of vnz for facade points near
the intersection with ground are more consistent with facade
points higher from the ground. In addition, values of vnz
for car points are less noisy than those before filtering, and
thus, they more clearly indicate that cars are nearly vertical
objects. Section V-B presents more results showing that
robust neighborhood filtering removes false edges in Markov
networks and improves final classification results.

V. EXPERIMENTS

A. Experiment Setup

We use the CMU Oakland 3D point cloud data set2,
which was collected from a moving platform in an urban
environment. The dataset contains 17 different scenes, having
over 1.6 million points and 44 semantic categories in total.
Around 1.4 million points with five categories (vegetation,
wire, pole/tree trunk, ground, and facade) are used in [1]. In
this paper, we present results using the exact same data as
used in [1] for comparison purposes. In separate experiments,
we include vehicle points to demonstrate that our method is
able to deal with scenes with more different objects. The
six-category data contains around 1.5 million points.

We implement 6 geometric features, with 3 spectral fea-
tures [12], 2 directional features, and 1 global contextual
feature. Spectral features, {σp,σs,σl}, measure the point-
ness, surface-ness, and linearity of the local neighborhood
of a point. Directional features capture the local orientation,
and their values are the scalar projection of the locally
estimated tangent and normal directions, {~vt ,~vn}, onto the
z-axis. Spectral and directional features are calculated over
r-RN with r = 0.6 m. When performing robust neighborhood
filtering, we set ωp = 10 in Eqn. (3). The last feature is the
height of a point with respect to the ground plane, the largest
horizontal plane fitted over the entire points of a scene.

2Available at http://www.cs.cmu.edu/˜vmr/datasets/
oakland_3d/cvpr09/doc
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The parameters for RF are set as follows: αt = 2/3,
βs = 1/

√
|ν | (refer to Section III-A.1 for meanings of the

variables), and αt is the same for each tree in the forest
and βs is the same for each node in each tree. We set the
maximum depth of a tree to be 10 and the maximum number
of trees in the forest to be 100. For SVM, we use RBF as
the kernel function. When constructing Markov networks,
we set the maximum number of neighbors of a point to be
20. If a point has more than 20 neighbors, we randomly
select 20 from them. We observe that for some scenes in
the Oakland data set, points in dense regions, e.g. ground
or vehicle points, have thousand of neighbors within 0.6
m radius. It is not necessary to build edges for each pair
of neighborhood points because doing so will blow out the
memory with very little, if any, reward. When minimizing
the energy of Markov networks, we use graph cuts with
expansion algorithm [19][20][21], and the maximum number
of iterations is set to be 3.

B. Results

We present results obtained from different methods,
and they are M3N from [1], SVM MRF, RF MRF, and
RNF RF MRF. SVM MRF and RF MRF use classification
results from SVM and RF, respectively, for calculating node
potentials of Markov networks. RNF RF MRF performs
robust neighborhood filtering as mentioned in Section IV for
feature extraction at RF’s prediction stage and for removing
false edges when constructing Markov networks. All four
methods perform label-based neighborhood filtering (remove
points in Np whose label is different from p) at their training
stage to reduce noise in the training data.

We use precision, recall, and F1 scores to quantify and
compare classification performance of different methods. The
F1 score of a label l is the harmonic means of its precision
Pl and recall Rl , and F1 = 2PlRl/(Pl +Rl). The average of
per-class F1 score is a better metric than overall accuracy
because the latter can hide poor performance of classes
with few samples, and we observe such a class imbalance
in the Oakland data set we use. Besides precision, recall,
and F1 scores, we compare the processing time of different
methods because we are also concerned about real time
implementation on mobile robotic systems.

1) Training on Single Scene: Table I shows the five-
category classification results using an entire single scene,
Oak15, for training, and Oak15 is the same training data
used in [1]. Among the six methods, M3N HOC constructs
Markov networks using both pairwise and high-order cliques,
and the rest five methods only consider pairwise contextual
relations. RNF RF MRF yields the best average F1 score
among pairwise methods. There is no significant improve-
ment after applying robust neighborhood filtering because
there are not as many inter-label intersections in the five-
category data as those in the six-category data, which we
will show later.

The results of M3N PAIR∗ in Table I are reproduced using
the code provided along with the paper [1], and they should
be close to the results of M3N PAIR. However, we see some

veg. wire pole/ grd. facadetrunk

P

M3N PAIR [1] 0.98 0.26 0.18 1.00 0.90
M3N HOC [1] 0.99 0.50 0.26 1.00 0.91

M3N PAIR∗ 0.90 0.23 0.27 0.99 0.95
SVM MRF 0.97 0.25 0.25 0.99 0.94
RF MRF 0.97 0.48 0.33 1.00 0.79

RNF RF MRF 0.99 0.38 0.37 1.00 0.78

R

M3N PAIR [1] 0.87 0.89 0.83 0.99 0.88
M3N HOC [1] 0.93 0.90 0.81 1.00 0.88

M3N PAIR∗ 0.94 0.06 0.80 0.99 0.71
SVM MRF 0.92 0.65 0.59 0.99 0.87
RF MRF 0.89 0.80 0.57 0.99 0.91

RNF RF MRF 0.88 0.83 0.70 0.99 0.93

F1

M3N PAIR [1] 0.702
M3N HOC [1] 0.778

M3N PAIR∗ 0.645
SVM MRF 0.709
RF MRF 0.755

RNF RF MRF 0.757

TABLE I
FIVE-CATEGORY CLASSIFICATION RESULTS USING AN ENTIRE SINGLE

SCENE, Oak15, FOR TRAINING. P = PRECISION, R = RECALL, AND F1 =
AVERAGE F1 SCORES OVER LABELS.

noticeable difference in recall for wire and facade points,
and we speculate that it might be related to the following
setup when we reproduce the results. First, we perform label-
based neighborhood filtering when extracting features at the
training stage, which might not be the case in [1]. Second,
we set the number of iterations to be 3 when learning MRF
weight vectors, and the number is not mentioned in [1]. There
might be other subtle inconsistency in the experiment setup
that we are not aware of.

We add vehicle points as one more category because
vehicles are common objects in urban scenes. Table II shows
the six-category classification results using scene Oak05 for
training. We choose Oak05 instead of Oak15 because there
are no vehicle points in the latter scene. RNF RF MRF yields
the best average F1 score among the four methods. In partic-
ular, we see significant precision and recall improvement for
vehicle points after applying robust neighborhood filtering
(M3N PAIR∗ has the highest precision 0.43, but considering
its low recall 0.04, we do not think it performs better than
RNF RF MRF). Fig. 3 shows example classification results
in quality of a scene in the data set using the four methods.
Without applying robust neighborhood filtering, nearly all
vehicle points are classified as ground points in Fig. 3a,
3b, and 3c because of the over smoothed-out effect after
energy minimization of Markov networks. In Fig. 3a, pole
points are wrongly classified as wire points at the higher
half of the pole, which does not happen for the other three
methods. Similar to this issue, high facade points are wrongly
classified as vegetation points in Fig. 1b. It seems that M3N
PAIR∗ sets a height threshold for facade and wire points in
those scenes.

Comparing Table I and II, we see a drop of average
F1 score for each method in Table II, and there are two
reasons for that. First, Oak15 contains more variety of data
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(a) M3N PAIR∗ (b) SVM MRF

(c) RF MRF (d) RNF RF MRF

Fig. 3. Comparison of six-category classification results on a sample scene using Oak05 for training. Color scheme: green-vegetation, orange-wire,
red-pole/trunk, gray-ground, blue-facade, yellow-vehicle

veg. wire pole/ grd. facade veh.trunk

P

M3N PAIR∗ 0.61 0.53 0.49 0.96 0.94 0.43
SVM MRF 0.77 0.59 0.44 0.96 0.88 0.07
RF MRF 0.85 0.48 0.49 0.96 0.87 0.17

RNF RF MRF 0.92 0.48 0.39 1.00 0.68 0.34

R

M3N PAIR∗ 0.98 0.62 0.42 0.99 0.01 0.04
SVM MRF 0.94 0.65 0.61 0.98 0.57 0.03
RF MRF 0.94 0.58 0.53 0.98 0.65 0.13

RNF RF MRF 0.92 0.61 0.66 0.98 0.70 0.33

F1

M3N PAIR∗ 0.473
SVM MRF 0.612
RF MRF 0.631

RNF RF MRF 0.660

TABLE II
SIX-CATEGORY CLASSIFICATION RESULTS USING AN ENTIRE SINGLE

SCENE, Oak05, FOR TRAINING.

for training than Oak05, except that the former does not
have vehicle points. Facade points in Oak05 all lie on one
plane, whereas facade points in Oak15 lie on several planes
that have different normals. In addition, there are no low
facade points in Oak05. Second, classifying more categories
of object introduces more confusion. Low facade points and
vehicle points are usually confused with each other because
they are of the similar hight and they are both plenary. We
could have picked other scenes for training that have more
variety in facade points, but they might not have enough
wire or pole points. It is difficult to select a single scene
that contains good training examples for each category, and
we find that training using Oak05 produces relatively better
results than training on other scenes.

2) Training on Randomly Selected Points: In order to
obtain training examples of larger variety, we randomly
select a certain percentage of points from each category in
each scene, instead of training on an entire single scene.
Table III shows the six-category classification results using
3% randomly selected points for training. RNF RF MRF
yields the best average F1 score, and most noticeably,
it significantly improves precision and recall for vehicle
points. Comparing Table II and III, average F1 scores of

veg. wire pole/ grd. facade veh.trunk

P
SVM MRF 0.73 0.72 0.56 0.97 0.13 0.43
RF MRF 0.95 0.70 0.57 0.98 0.96 0.71

RNF RF MRF 0.97 0.67 0.60 0.99 0.93 0.77

R
SVM MRF 0.91 0.74 0.52 0.99 0.00 0.69
RF MRF 0.96 0.66 0.55 0.99 0.88 0.64

RNF RF MRF 0.93 0.69 0.62 1.00 0.91 0.84

F1
SVM MRF 0.598
RF MRF 0.794

RNF RF MRF 0.825

TABLE III
SIX-CATEGORY CLASSIFICATION RESULTS USING 3% RANDOMLY

SELECTED POINTS FROM EACH CATEGORY IN EACH SCENE FOR

TRAINING.

RF MRF and RNF RF MRF improve, especially for facade
and vehicle points. However, the performance of SVM MRF
does not improve, and its gap to RF MRF and RNF RF MRF
increases. In Table III, SVM MRF has very low precision
and recall for facade points, and we find out that almost all
of the facade points are classified as vegetation points by
SVM MRF. One explanation is that the bumpiness of facade
points near window areas is confused with the scatterness of
vegetation points. From another angle, it shows that SVM is
not as robust as RF when dealing with noisy data.

Comparing Table I and III, we find that the average F1
scores improve for RF MRF and RNF RF MRF in Table
III, even though they deal with one more category. Having a
more variety of training examples picked from each scene
instead of just from an entire single scene improves the
classification results for a robust classifier such as RF. We do
not show M3N results in Table III because it is not applicable
when we randomly pick training points. M3N has to construct
a Markov network at the training stage in order to learn both
node and edge weights, and isolatedly selected points cannot
form a valid Markov network.

We also try other percentages of data used for training be-
sides 3%, and Fig. 4 shows the average F1 score v.s. different
percentage. Performance of RF MRF and RNF RF MRF is

2695



Fig. 4. Average F1 score v.s. different percentage of data used for training.

more stable than SVM MRF because they are more robust to
noise. Training on more data increases variety at the risk of
introducing more noise. The ups and downs of SVM MRF’s
F1 scores indicate that sometimes variety wins the battle and
the other times noise wins. For RF MRF and RNF RF MRF,
training on 0.3% data produces similar results to those
trained from 1% and 3% data.

3) Timing: In addition to classification accuracy, we are
also concerned about the speed. Table IV shows the process-
ing time per 10,000 points in seconds, broken into modules,
when using Oak05 for training. The machine we use is
Intel(R) i7-2620 CPU @ 2.7GHz with 4GB memory. As
mentioned at the beginning of Section V-B, we perform
label-based neighborhood filtering at the training stage for all
four methods. Therefore, time for extracting features used for
training is the same for all four methods. When extracting
features used for prediction, RNF RF MRF applies robust
neighborhood filtering, and about 15% points need to go
through such filtering, which takes about extra 1 second per
10,000 points. From Table IV, training using RF is much
faster than SVM, even though their prediction time is about
the same. M3N PAIR∗ takes significantly longer time in the
prediction and inference stages than the other three methods.
Therefore, applying machine learning methods, such as RF
and SVM, as a preprocessing step for calculating node
potentials simplifies the work at the inference stage of MRF.

feature train predict infer totaltrain predict
M3N PAIR∗

11.87 11.89
39.00 11.58 74.34

SVM MRF 48.06 0.22 1.11 73.15
RF MRF 1.18 0.18 1.07 26.19

RNF RF MRF 12.96 1.18 0.18 0.90 27.09

TABLE IV
PROCESSING TIME PER 10,000 POINTS IN SECONDS, BROKEN INTO

MODULES, WHEN USING Oak05 FOR TRAINING.

Fig. 5. Average F1 score v.s. different neighborhood filtering scheme
when using 3% randomly selected points for training (see Section V-C for
explanations of LNF, RNF, and RAW).

C. Effect of Neighborhood Filtering

We investigate the effect of applying different neighbor-
hood filtering schemes on the final classification results, and
they are label-based neighborhood filtering (LNF), robust
neighborhood filtering (RNF), and RAW. We mentioned LNF
at the beginning of Section V-B, and explained RNF in detail
in Section IV. RAW means taking every point within r radius
of a point as its neighbors without applying any filtering. Fig.
5 shows the average F1 score v.s. different neighborhood
filtering scheme when using 3% randomly selected points
for training. We denote A B as training using scheme A
and predicting using scheme B, where A, B ∈ (LNF, RNF,
RAW). Results of LNF LNF are shown in the figure just for
reference, because using LNF in prediction is not possible
as ground truth labels are not available in prediction. From
the figure, we see that, generally, using RNF yields higher
average F1 scores than using RAW. However, for RF MRF,
RAW RAW produces better results than LNF RAW. One
explanation is that RF, at one hand, is robust to noise, and at
the other hand, it learns subtle geometric structures berried
in the raw neighborhood.

RNF does have some drawbacks. In Fig. 2b, a few facade
points and vegetation points not on the intersection areas
are highlighted. Then, in Table II and III, we see a drop of
precision for facade points and a drop of recall for vegetation
points after applying RNF, because some vehicle and vegeta-
tion points are classified as facade points. Removing outliers
in the neighborhood also removes some detailed structure of
vehicle and vegetation points which makes them look more
like plenary facade points.

VI. CONCLUSIONS

This paper has presented an efficient classification method
for semantic labeling of 3D point clouds. Our method uses
simplified Markov networks to model the contextual relations
between points. Instead of calculating node and edge poten-
tials from learned weights, we obtain node potentials from
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point-wise classification results using standard classifiers,
and calculate edge potentials using physical distance between
points. We also propose a novel robust neighborhood filtering
for excluding outliers in the neighborhood, so that noise
in local geometric statistics is reduced when we extract
features and the number of false edges are reduce when we
construct Markov networks. Our experimental results show
good performance in terms of accuracy and speed when
compared with state-of-the-art methods.

In the future, we would like to explore and use more
contextual features besides the height to ground plane fea-
ture. For examples, besides ground, buildings, especially
high buildings, are also importance geometric reference in
the scene. Incorporating distances to building planes as
additional features might reduce confusion between vehicle
and facade points. We are also considering using supervoxels
as the processing element, instead of individual points, for
efficiency purposes. Moreover, using supervoxels opens up
more areas for modeling high-order interactions between
regions. Last but not least, we will experiment with data
collected from a greater variety of 3D sensors.
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