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Abstract
We describe results on combining depth informa-

tion from a laser range-finder and color and texture
image cues to segment ill-structured dirt, gravel, and
asphalt roads as input to an autonomous road follow-
ing system. A large number of registered laser and
camera images were captured at frame-rate on a vari-
ety of rural roads, allowing laser features such as 3-D
height and smoothness to be correlated with image
features such as color histograms and Gabor filter re-
sponses. A small set of road models was generated by
training separate neural networks on labeled feature
vectors clustered by road “type.” By first classify-
ing the type of a novel road image, an appropriate
second-stage classifier was selected to segment indi-
vidual pixels, achieving a high degree of accuracy on
arbitrary images from the dataset. Segmented images
combined with laser range information and the vehi-
cle’s inertial navigation data were used to construct
3-D maps suitable for path planning.

1 Introduction
An autonomous vehicle navigating on- and off-road

(e.g., military reconnaissance) must be aware of dif-
ferent kinds of terrain in order to make prudent steer-
ing decisions. To minimize terrain-based dangers and
maximize speed, it is often desirable to use any roads
present in an area of operation for as much of a point-
to-point path as possible. This special case of gen-
eral terrain traversal, road following, requires an abil-
ity to discriminate between the road and surrounding
areas and is a well-studied visual task. Much work has
been done on driving along highways and other paved
or well-maintained roads [1, 2, 3], but marginal rural
and backcountry roads are less amenable to standard
techniques for a variety of reasons. There may be no
lane lines or markings; the road/non-road border is of-
ten spatially fuzzy and has low intensity contrast; the
overall road shape may not follow smooth curves and
the support surface may be highly non-planar; and
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the appearance of the road itself can change drasti-
cally: mud, clay, sand, gravel, and asphalt may all be
encountered.

Algorithms that attempt to delineate the road via
region-based segmentation have been fairly successful.
Color [4, 5] and texture [6] are two characteristics that
have been used to differentiate the road from border-
ing vegetation or dirt. Some work has also been done
on using 3-D information to constrain segmentation:
for example, [7] applied structure-from-motion tech-
niques to automatically detected and tracked features
in order to steer a vehicle along a dirt road in the
midst of dense trees. Visual and structural modalities
are clearly complementary: vision alone may be inad-
equate or unreliable in the presence of strong shadows,
glare, or poor weather, while road boundaries do not
necessarily coincide with 3-D structures—the height
border between a dirt road and short grass, for ex-
ample, is undetectable by most current methods and
sensors.

Classification offers a straightforward way to com-
bine these two sources of information. In this paper,
we report work on road segmentation using a camera
and a laser range-finder mounted on an autonomous
four wheel-drive vehicle. By framing the problem as
one of learning by labeled examples whether small
image patches (registered with laser range informa-
tion) belong to the road or background, we can easily
integrate disparate features such as 3-D height and
smoothness with image qualities like color and tex-
turedness. We have found that fusing these modali-
ties yields better performance than any one method
over a wide variety of individual road images. Clearly,
though, it is infeasible to learn a separate model for
every image. Learning a single model for the entire
image corpus is a simple solution, but it reduces clas-
sification accuracy because of the variety of road and
background types that must be handled. Therefore,
we propose a method to automatically learn and ap-
ply a small number of different road appearance mod-
els which boosts performance considerably.

In the next three sections we will briefly describe
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Figure 1: Sample road images

the background behind our approach, then detail our
experimental procedures and training and testing data,
and finally present results.

2 Road segmentation
We frame road segmentation as a classification prob-

lem in which we wish to identify small patches over the
field of view as either road or non-road on the basis of
a number of properties, or features, that we compute
from them. These features are non-geometric—that
is, image location is not considered for segmentation,
only local image properties. Patches are manually
labeled for a representative set of images (Figure 1
shows some examples from our data), and a neural
network [8] is trained to learn a decision boundary in
feature space. This model can be used to classify pix-
els in novel images, from which we can either (1) derive
road shape parameters directly by recursively estimat-
ing curvature, width, etc. from the edges of the road
region and control steering accordingly (analogous to
[3]); or (2) use the laser information to backproject
road and non-road regions into a 3-D map (see Sec-
tion 4 for an example) suitable for a more general path
planner [9].

We have two sensors available—a laser range-finder
which gives dense depth values and a video camera—
with differing fields of view and capture rates. By
registering the images obtained from each sensor both
spatially and temporally (our procedure is explained
in the next section), we can formulate an image pair

that contains correlated information from both. We
have chosen four basic kinds of features to distinguish
road patches from plants, rocks, tree, grass, and other
off-road zones—two from the laser half of the pair and
two from the image half. They are:

Height How far a laser point is vertically from the ve-

hicle support surface 1. This should allow bushes
and trees to be eliminated regardless of their vi-
sual appearance.

Smoothness The height variance in the neighbor-
hood of a laser point. Roads should be locally
flat, while tall grass and loose rocks are bumpier.

Color A color histogram [10] is computed over each
image patch. Roads are expected to be more-or-
less consistent in their mix of colors —generally
brown or gray—while the background is expected
to exhibit more green and blue colors to allow
discrimination.

Texture Gabor filters [11] are computed over each
image patch to characterize the magnitude and
dominant direction of texturedness at different
scales. The road should be more homogeneous or
anisotropic (e.g., tracks, ruts) than bordering
plants.

3 Methods

Real-time video, laser range data, and inertial nav-
igation information were recorded from a robotic vehi-
cle tele-operated on a variety of dirt and asphalt roads
at Fort Indiantown Gap, PA in July, 2001. Approxi-
mately 73 minutes of late-morning driving at 5-15 mph
were captured in 14 distinct sequences totaling 131,471
video frames.

The analog output of the camera, a Sony DXC-390,
was converted to DV before capture and then subsam-
pled, resulting in a final resolution of 360 × 240 for
image processing. The laser range-finder, a Schwartz
SEO LADAR, acquires a 180× 32 array of range val-
ues ∼20 times a second covering a field of view of 90
degrees horizontally and 15 degrees vertically.

For training, 120 video frames were randomly cho-
sen and the most-nearly synchronous laser range im-
age was paired with each. Of these, nine image pairs
were eliminated due to missing data in the laser image
(a hardware artifact) and four because the vehicle was
not on a road. This left 107 image pairs for training
and testing. One contiguous road region was manually
marked in each camera image with a single polygon
(some “two-track” roads with grass growing down the
middle necessitated somewhat contorted boundaries
to exclude these areas).

1A vehicle-centric coordinate system is chosen so that +Z

is forward with respect to the direction the vehicle is pointing,
+X is right, and +Y is up. The height h and tilt angle θ of the
camera/laser are known and accounted for.



3.1 Features

Feature vectors were computed for each image at
10-pixel intervals vertically and horizontally, with
roughly a 20-pixel margin to ensure that filter kernels
remained entirely within the image. This resulted in
640 feature vectors per image. Centered on each fea-
ture location, three different sizes of subimage were
examined for feature computation: 7×7, 15×15, and
31×31. A total of fourteen feature sets, or segments of
the full feature vector, were used for learning. These
consisted of:

Six color feature sets Two kinds of color features
were computed over the above three scales: a standard
4-bins-per-RGB-channel joint color histogram (43 to-
tal bins), and an “independent” color histogram con-
sisting of 8 bins per channel (8 × 3 total bins).

Two texture feature sets Texture features con-
sisted of the odd- and even-phase responses of a bank
of Gabor filters histogrammed over the 7×7 and 15×15
scales (8 bins per phase with limits defined by the max
and min filter response on each particular image). For
each phase, the Gabor filter bank consisted of three
wavelengths (2, 4, and 8—resulting in kernel sizes of
6 × 6, 12 × 12, and 25 × 25, respectively) and eight
equally-spaced orientations.

Six laser feature sets As Figure 2 shows, not
every image location has laser information associated
with it. Only those feature vectors with adequate laser
information (> 1 point projecting into its subimage)
were included in training with any feature subset that
was not exclusively image-based. For eligible loca-
tions, the mean and covariance were computed of the
X, Y, Z coordinates of the n laser points projecting to
the local 15 × 15 or 31 × 31 image neighborhood. As
features we used the mean Y value, the variance of Y ,
and the Y mean and variance over the two scales. The
Y mean allows discrimination based on height relative
to the base of the vehicle’s tires, while the Y variance
was included as a simple measure of smoothness.

3.2 Calibration and classification

The camera’s internal parameters were calibrated
using J. Bouguet’s Matlab toolbox [12]. The external
orientation between the camera and LADAR was ob-
tained by correlating corresponding points imaged by
each device over a number of scenes and then comput-
ing a least-squares fit to the transformation according
to the procedure described in [13].

The Matlab Neural Network Toolbox [14] was used
to train the neural networks in this paper. Each neural
network had one hidden layer consisting of 20 hidden
units; weights were updated using conjugate-gradient
back-propagation with the “tansig” activation func-

Figure 2: Laser-camera registration. Darker laser pix-
els are more distant.

tion. During training, the classification accuracy of a
particular neural network was estimated using cross-
validation, where 3

4
of any given data set was used as a

training fold and the remaining 1

4
for testing, rotating

the testing fraction four times. The quoted accuracy
is the median of the four testing accuracies.

4 Results
We experimented with a number of different train-

ing regimes to assess the utility of the various modali-
ties (laser, color, and texture) both independently and
in combination, on individual images and on the sam-
ple corpus as a whole.

4.1 One model per image

A separate neural network was trained on each of
the 107 random camera-laser pairs {Ii} for each of the
feature sets described in the previous section. Taking
the mean accuracy of each feature subset over all im-
ages, the best performers by modality were the 31×31
independent color histogram, the 15 × 15 Gabor his-
togram, and the 31 × 31 laser Y mean and variance.
The percentage mean accuracies over all images for
these best individual performers, as well as for feature
sets comprising combinations of them (color and tex-
ture, texture and laser, etc.) trained in the same way
are shown in the S column of Table 1.

Color was clearly the most informative of the modal-
ities, though texture and laser alone did fairly well2.

2As a baseline for performance assessment, the mean pro-



Features S Min Std DD DS SD k = 4
C 97.0 81.3 3.2 93.7 93.6 75.4 94.8
T 88.6 78.4 3.9 77.8 78.8 52.3 81.3
L 84.8 70.1 5.0 78.1 78.1 69.6 —

C + T 97.3 75.0 2.7 94.7 95.5 62.6 96.1
C + L 96.1 88.0 2.0 89.5 90.2 71.3 91.6
T + L 91.2 81.0 3.7 81.3 81.5 54.2 84.1

C+T+L 96.6 91.2 1.8 91.0 92.8 59.6 93.3

Table 1: Mean feature subset performance for vari-
ous training and testing regimes. Features: C=color,
T=texture, L=laser. Data sets: S=107 individual
images; D=25% all-image digest (1st letter=training,
2nd=testing).

Combining texture and laser features with color did
not appreciably change the mean accuracy, but it in-
creased consistency of performance. The standard de-
viation of the accuracy Std was cut almost in half
going from color alone to color, texture, and laser to-
gether (C+T+L), and the minimum accuracy Min

(i.e., on the image eliciting the worst performance for
that feature set) went up nearly 10%. This pattern
was repeated for the other modalities, indicating that
adding features often served to resolve scene ambigu-
ities.

For example, each row of Figure 3 shows the most
difficult images to classify using laser alone and tex-
ture alone. The left column shows the segmentation
obtained by the best-performing neural network of the
training folds for that individual modality. The right
column shows the results of segmenting the same im-
age with the C+T+L classifier’s best training fold neu-
ral network. The laser classifier’s defect in Figure 3(a)
is most obvious: the asphalt road and grassy strip to
the right are in the same plane and both quite smooth,
which is why the segmentation erroneously extends to
the treeline on the right. The color and texture discon-
tinuity between the two regions is much clearer in (b).
The texture classifier presumably has trouble with its
image in (c) because of the similar patterns of light
and shadow in the trees and on the road; adding color
and laser information virtually eliminates these prob-
lems.

4.2 One model for all images

To test learning a single road model for the entire
corpus as well as the generality of the individual im-
age models, a digest D was created from the set of 107

portion of feature vectors labeled “road” over all 107 images
was 47.7%. Considering only those feature vectors containing
adequate laser information (for the 31× 31 subimage size), this
fraction was 55.7%.

(a) Laser (b) C+T+L

(c) Texture (d) C+T+L

Figure 3: Segmentation of hardest road images for
independent modalities vs. joint classifier

images by randomly selecting 25% of each image’s fea-
ture vectors and concatenating them. Of D’s 17,120
feature vectors, 8,168 or 47.7% were labeled as “road.”

Training was performed on D for the seven feature
sets from Table 1 exactly as if it were a larger ver-
sion of an image Ii. Results are shown in the DD

column of the table. The power of the digest to faith-
fully represent the images themselves can be seen in
the similarity of the accuracies obtained by training
and testing on the digest alone (DD) to training on
the digest and computing the mean accuracy over all
of the individual images (DS). Performance with a
single model for the entire digest declines somewhat
across all of the feature sets from the mean accuracy
of separate models for every image (S). This effect is
most pronounced for texture, indicating that on-road
and off-road textures are more similar for the entire
image corpus than, say, on-road and off-road colors.

The poor generality of the single-image models
learned in the previous subsection is demonstrated by
testing them on D; the mean performance over the
107 images is given in column SD of the table. Ac-
curacy drops dramatically because of the presentation
of road and background types not seen in the single
image training.

As an example of the utility of the laser information
beyond segmentation, a road map constructed from
one manually-driven sequence over roughly 300 me-
ters (1825 frames) is shown in Figure 4. As the vehicle
traveled from the lower-right to the upper-left corner
of the map, the image was segmented at 10 frame in-
tervals using the single-model, color-only classifier C.
The labels of feature locations with associated laser-
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Figure 4: Road map constructed with single-model
feature set C classifier, with green indicating road and
red non-road. Units are meters.

derived depths were projected into a 1-meter resolu-
tion grid square world map using position informa-
tion from the vehicle’s inertial navigation system. Ne-
glecting height for clarity, the map shows the degree
of roadness/non-roadness of each grid square along a
green/red continuum, with color saturation indicating
confidence (proportional to the number of labels pro-
jected to the square, up to 5). White grid squares were
not mapped.

Overall, the road is mapped quite clearly despite
shadows and changes in road composition. Three dif-
ficult views along the route at map positions a, b, and
c (blue dot=position, purple dot=viewing direction)
are shown in Figures 4(a)-(c). The left road edge is
not as sharp as the right at position a because the road
dirt extends into the trees. Road is found in a large
forward area at position b because the vehicle is at an
intersection before turning right. Finally, the trans-
verse road boundary is easily found on the opposite
side of the T-intersection at position c.

4.3 One model per road type

The lesser performance of a single neural network
trained on a digest of all of the images versus that
of individual networks for each image is presumably
due in large part to the greater overlap of road and
non-road feature vector distributions in the former

method’s training set. Partitioning a digest D into
pieces d1,d2, . . . such that the road and non-road fea-
ture vector distributions are more widely separated
within each di than in D, then training on each di,
would likely reduce the difficulty of the classification
problem. Observing that the within-image contrast
between road and non-road was strong across the sam-
ple images, we made the following important assump-
tion: that similar road types are correlated with simi-
lar background types in each image. This implies that
clustering road types is roughly equivalent to cluster-
ing background types, and that all of the background
types within such a cluster would on average be more
dissimilar to the road types in the cluster than those
of the digest as a whole.

We tested this hypothesis by using k-means clus-
tering [15] to group the 107 sample images for the
best color feature set C, the best texture feature set
T, and the best color and texture feature set C + T3.
Roads were not clustered with laser feature informa-
tion because the major variation in road types for this
data is visual: dirt, gravel, and asphalt have marked
differences in color and degree of texturedness, but
all roads were approximately smooth and at the same
height relative to the vehicle.

Ideally, every road-labeled feature vector in an im-
age would define a “road signature” and thus the space
in which clustering is done, but this fails because (a)
the number of feature dimensions would exceed the
number of sample images, and (b) after training is
done and the system is in operation, feature vectors
will not be labeled (that being the point of segmen-
tation). First, to reduce the dimensionality principal
component analysis [15] was performed on the road-
labeled digest feature vectors R ⊂ D to obtain a
transformation that orthogonalized feature space and
removed those principal components that contributed
less than N% of the variation. A fairly large N was
chosen because of the small number of samples (e.g.,
N = 15% for C, compressing 24 features down to 2;
N = 4% for T, reducing 384 features to 3; and N = 3%
for C + T, taking 408 features to 5). Second, a small
subset of feature vector locations was chosen to repre-
sent the road signature of each image, as shown by the
points in Figure 5, with the goals of (a) maximizing
the a priori probability of them being labeled road
based on the sample images, and (b) an even distri-
bution to capture spatial variation of feature values
across the road region.

3The algorithm was run 50 times with random seeds for each
k = 2, 3, 4, 5 and feature set; the result exhibiting the lowest
within-cluster scatter to between-cluster scatter ratio was used.



Figure 5: Probability of a feature location being la-
beled road over sample images, with “road signature”
locations overlaid.

After clustering for each k, D was divided into
pieces d1, . . . ,dk according to which image each block
of 160 feature vectors was taken from, and a sepa-
rate neural network was trained on each di. For every
cluster i, the associated best neural network (i.e., from
the training fold with the highest accuracy) was then
tested on all of the sample images in that cluster. A
consistent performance increase of up to several per-
centage points over the single-model classifiers in the
DS column of Table 1 was obtained across all of the
feature sets and values of k, with k = 4 (performance
shown in the last column of Table 1) yielding the great-
est average improvement. The quality of clustering
would likely be better with more sample images.

5 Conclusion

We presented a road segmentation system that inte-
grates information from a registered laser range-finder
and camera. Road height, smoothness, color, and tex-
ture were combined to yield higher performance than
individual cues could achieve. By clustering the roads
into a few different types and training a neural net-
work for each, accuracy on the entire image corpus was
improved over a simple single-model approach while
still retaining good generality. Laser range informa-
tion was invaluable both as a feature for segmentation
and for fusing labeled images into a 3-D map.

The segmentation procedure described here assumes
that the vehicle is on a road and is traveling along it.
For vehicles which may operate off-road, road detec-
tion is a necessary precursor to road following. Using
visual and laser feature sets similar to those exploited
here, an additional classifier could be trained to rec-
ognize scenes containing roads in order to turn on or
off the road segmentation module. Our data set con-
tains GPS position information for the vehicle; com-
bined with an a priori map of roads in the vicinity
this would provide a strong additional cue for training
a road detection classifier.

For maximum generality, the data set used for train-
ing needs to be augmented to capture the visual and

structural effects of temporal variations such as time
of day, weather, and season. Different road models
could be learned for these conditions; fewer such mod-
els might suffice if parametrized by continuous vari-
ables such as sky brightness or sun angle.
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